Type Here to Get Search Results !

Selina Concise Mathematics Class 6 ICSE Solved Exercise 16 (A) Fully Sol...

Access Selina Solutions Concise Mathematics Class 6 Chapter 22 Simple (Linear) Equations



Exercise 22(A)

1. Solve:

(i) x + 2 = 6

(ii) x + 6 = 2

(iii) y + 8 = 5

(iv) x + 4 = – 3

(v) y + 2 = – 8

Solution:

(i) x + 2 = 6

x = 6 – 2

We get,

x = 4

Hence, the value of x for x + 2 is 4

(ii) x + 6 = 2

x = 2 – 6

We get,

x = = – 4

Hence, the value of x for x + 6 = 2 is – 4

(iii) y + 8 = 5

y = 5 – 8

We get,

y = – 3

Hence, the value of y for y + 8 = 5 is – 3

(iv) x + 4 = – 3

x = – 3 – 4

We get,

x = – 7

Hence, the value of x for x + 4 = – 3 is – 7

(v) y + 2 = – 8

y = – 8 – 2

We get,

y = – 10

Hence, the value of y for y + 2 = – 8 is – 10

2. Solve:

(i) x – 3 = 2

(ii) m – 2 = – 5

(iii) b – 5 = 7

(iv) a – 2.5 = – 4

(v) y – 3 (1 / 2) = 6

Solution:

(i) x – 3 = 2

x = 2 + 3

We get,

x = 5

Therefore, the value of x for x – 3 = 2 is 5

(ii) m – 2 = – 5

m = – 5 + 2

We get,

m = – 3

Therefore, the value of m for m – 2 = – 5 is – 3

(iii) b – 5 = 7

b = 7 + 5

We get,

b = 12

Therefore, the value of b for b – 5 = 7 is 12

(iv) a – 2. 5 = – 4

a = – 4 + 2. 5

We get,

a = – 1. 5

Therefore, the value of a for (a – 2. 5) = – 4 is – 1. 5

(v) y – 3 (1 / 2) = 6

This can be written as,

y – (7 / 2) = 6

y = 6 + (7 / 2)

y = (12 + 7) / 2

y = 19 / 2

y =
Selina Solutions Concise Mathematics Class 6 Chapter 22 Simple (Linear) Equations - 1

Therefore, the value of y for y – 3 (1 / 2) = 6 is
Selina Solutions Concise Mathematics Class 6 Chapter 22 Simple (Linear) Equations - 2

3. Solve:

(i) 3x = 12

(ii) 2y = 9

(iii) 5z = 8.5

(iv) 2.5m = 7.5

(v) 3.2p = 16

Solution:

(i) 3x = 12

x = 12 / 3

We get,

x = 4

Hence, the value of x for 3x = 12 is 4

(ii) 2y = 9

y = 9 / 2

We get,

y = 4.5

Hence, the value of y for 2y = 9 is 4.5

(iii) 5z = 8.5

z = 8.5 / 5

We get.

z = 1.7

Hence, the value of z for 5z = 8.5 is 1.7

(iv) 2.5m = 7.5

m = 7.5 / 2.5

We get,

m = 3

Hence, the value of m for 2.5m = 7.5 is 3

(v) 3.2p = 16

p = 16 / 3.2

p = (16 × 10) / 32

p = 160 / 32

p = 5

Hence, the value of p for 3.2p = 16 is 5

4. Solve:

(i) x / 2 = 5

(ii) y / 3 = – 2

(iii) a / 5 = – 15

(iv) z / 4 = 3 (1 / 4)

(v) m / 6 = 2 (1 / 2)

Solution:

(i) x / 2 = 5

x = 5 × 2

We get,

x = 10

Hence, the value of x for x / 2 = 5 is 10

(ii) y / 3 = – 2

y = – 2 × 3

We get,

y = – 6

Hence, the value of y for y / 3 = – 2 is – 6

(iii) a / 5 = – 15

a = – 15 × 5

We get,

a = – 75

Hence, the value of a for a / 5 = – 15 is – 75

(iv) z / 4 = 3 (1 / 4)

This can be written as,

z / 4 = 13 / 4

z = 13 / 4 × 4

We get,

z = 13

Hence, the value of z for z / 4 = 3 (1 / 4) is 13

(v) m / 6 = 2 (1 / 2)

This can be written as,

m / 6 = 5 / 2

m = 5 / 2 × 6

m = 5 × 3

We get,

m = 15

Hence, the value of m for m / 6 = 2 (1 / 2) is 15

5. Solve:

(i) – 2x = 8

(ii) – 3.5y = 14

(iii) – 5z = 4

(iv) – 5 = a + 3

(v) 2 = p + 5

Solution:

(i) – 2x = 8

x = – 8 / 2

We get,

x = – 4

Therefore, the value of x for – 2x = 8 is – 4

(ii) – 3.5y = 14

y = – 14 / 3. 5

We get,

y = – 4

Therefore, the value of y for – 3.5y = 14 is – 4

(iii) – 5z = 4

z = – 4 / 5

We get,

z = – 0.8

Therefore, the value of z for – 5z = 4 is – 0.8

(iv) – 5 = a + 3

– 5 – 3 = a

On calculating, we get

a = – 8

Therefore, the value of a for – 5 = a + 3 is – 8

(v) 2 = p + 5

2 – 5 = p

We get,

p = – 3

Therefore, the value of p for 2 = p + 5 is – 3

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.