The Easiest Method to Solve this problem
The easiest method to Solve this problem #manojagarwal #empoweringwisdomchannel #mathsolympiad #mathstricks The easiest method to Solve this problemhttps://youtu.be/t_4ND8TRFhE?si=3HbKEru5aJPArxMX Solve 2^25 - 2^24 - 2^23 - 2^22 - 2^21 -2^20 To solve this expression, you can factor out a common factor of 2^20: 2^25 - 2^24 - 2^23 - 2^22 - 2^21 - 2^20 = 2^20 * (2^5 - 2^4 - 2^3 - 2^2 - 2^1 - 1) Now, let's simplify the expression inside the parentheses: 2^5 - 2^4 - 2^3 - 2^2 - 2^1 - 1 = 32 - 16 - 8 - 4 - 2 - 1 = 1 So, the simplified expression is: 2^20 * 1 = 2^20 Therefore, the solution to the expression is 2^20. #manojagarwal #empoweringwisdomchannel #mathproblems the full steps to solve the expression 2^25 - 2^24 - 2^23 - 2^22 - 2^21 - 2^20. Step 1: Factor out the common factor of 2^20: 2^25 - 2^24 - 2^23 - 2^22 - 2^21 - 2^20 = 2^20 * (2^5 - 2^4 - 2^3 - 2^2 - 2^1 - 1) Step 2: Calculate the values inside the parentheses: 2^5 - 2^4 - 2^3 - 2^2 - 2^1 - 1 = 32 - 16 - 8 - 4 - 2 - 1 Step 3: Perform the subtraction inside the parentheses: 32 - 16 - 8 - 4 - 2 - 1 = 1 Step 4: Substitute the simplified value back into the original expression: 2^20 * 1 = 2^20 So, the solution to the expression 2^25 - 2^24 - 2^23 - 2^22 - 2^21 - 2^20 is 2^20.